
Survey on Malware Detection Methods

Abstract— Malwares are malignant software’s .It is designed to
damage computer systems without the knowledge of the owner
using the system. Software’s from reputable vendors also contain
malicious code that affects the system or leaks information’s to
remote servers.Malware’s includes computer viruses, spyware,
dihonest ad-ware,rootkits,Trojans,dialers etc. The paper focuses
on various Malware detection methods like signature based
detection, reverse engineering of obfuscated code, to detect
malicious nature.
Keywords— Malware, obfuscation, Malware normalizer, reverse
engineering

I. INTRODUCTION
Malware is a collective term for any malicious software which
enters system without authorization of user of the system. The
term is created from merging the words ‘malicious’ and
‘software’. Malware is a very big threat in today’s computing
world. It continues to grow in volume and evolve in
complexity. As more and more organizations try to address
the problem, the number of websites distributing the malware
is increasing at an alarming rate and is getting out of control.
Most of the malware enters the system while downloading
files over Internet. Once the malicious software finds its way
into the system, it scans for vulnerabilities of operating system
and perform unintended actions on the system finally slowing
down the performance of the system.

Malware has ability to infect other executable code,
data/system files, boot partitions of drives, and create excessive
traffic on network leading to denial of service. When user
executes the infected file; it becomes resident in memory and
infect any other file executed afterwards. If operating system
has a vulnerability, malware can also take control of system
and infect other systems on network. Such malicious programs
(virus is more popular term) are also known as parasites and
adversely affect the performance of machine generally
resulting in slow-down.

Some malware are very easy to detect and remove through
antivirus software. These antivirus software maintains a
repository of virus signatures i.e., binary pattern characteristic
of malicious code. Files suspected to be infected are checked
for presence of any virus signatures. This method of detection
worked well until the malware writer started writing
polymorphic and metamorphic malware. These variant of
malware avoid detection through use of encryption techniques
to thwart signature based detection.

Security products such as virus scanners look for
characteristics byte sequence (signature) to identify malicious
code. The quality of the detector is determined by the
techniques employed for detection. A good malware detection
technique must be able to identify malicious code that is
hidden or embedded in the original program and should have
some capability for detection of yet unknown malware.
Commercial virus scanners have very low resilience to new
attacks because malware writers continuously make use of new
obfuscation methods so that the malware could evade
detections.

This paper is organised as follows. Section II briefly describes
various types of malware. Section III is a review of malware
detector .Section IV reviews malware detection methods
explains structural and functional aspects of polymorphic and
metamorphic malware. Section V explains obfuscation and
transformation techniques used by malware to avoid detection.
Section VI explains malware similarity analysis
method .Section VII reviews malware normalization with
concluding remarks in Section VIII.

II. Malware Types
Malware can be broadly classified into following categories.

A. Viruses
Computer virus refers to a small program with harmful intent
and has ability to replicate self. Mode of operation is through
appending virus code to an executable file. When file is run,
virus code gets executed. The original virus may evolve into
new variants by modifying itself as in case of metamorphic
viruses. A virus may spread from an infected computer to
other through network or corrupted media such as floppy
disks, USB drives. Viruses have targeted binary executable
file (such as .COM and .EXE files in MSDOS , PE files in
Windows etc.), boot records and/or partition table of floppy
disks and hard disk, general purpose script files, documents
that contains macros, registry entries in Windows, buffer
overflow, format string etc.

B. Worms
Worms are self replicating programs. It uses network to send
copies of itself to other systems invisibly without user
authorization. Worms may cause harm to network by
consuming the bandwidth. Unlike virus the worms do not
need the support of any file. It might delete files, encrypt files
in as crypto viral extortion attack or send junk email. Example
Sasser, My Doom, Blaster, Melissa etc.

C. Spyware
Spyware is a collective term for software which monitors and
gathers personal information about the user like the pages
frequently visited, email address, credit card number, key
pressed by user etc. It generally enters a system when free or
trial software is downloaded.

D. Adware
Adware or advertising-supported software automatically plays,
displays, or downloads advertisements to a computer after
malicious software is installed or application is used. This
piece of code is generally embedded into free software. The
problem is, many developers abuse ad – supported software
by monitoring Internet users’ activities .The most common
adware programs are free games, peer-to-peer clients like
KaZaa, BearShare etc.

Vinod P.
Department of Computer Engineering,

 Malaviya National Institute of Technology,
Jaipur, Rajasthan

e-mail: vinod_p22@yahoo.com

V.Laxmi,M.S.Gaur
Department of Computer Engineering,

Malaviya National Institute of Technology,
Jaipur, Rajasthan

e-mail: {vlaxmi|gaurms}@mnit.ac.in

E. Trojans
Trojan horses emulate behavior of an authentic program such
as login shell and hijacks user password to gain control of
system remotely. Other malicious activities may include
monitoring of system, damages system resources such as files
or disk data, denies specific services.

F. Botnet
A botnet is remotely controlled software – collection of
autonomous software robots. It is usually a zombie program
(Worms, Trojans) under common control on public and
private network infrastructure. Botnets are usually used to
send spam /spyware remotely. Bot doesn’t sit around on
machine (infected machine) waiting for the instruction from a
third party instead it looks for the communication with similar
instances of bots awaiting instructions. Simplest bot
configuration is where the bots are connected to single central
hub. This configuration does not scale much because
maintenance of various connections over single server is
difficult. The next configuration is hierarchical structure
where bot master connects to hundreds of bots which in turn is
connected to many bots. Thus this configuration would scale
much larger extent.

III.Malware Detector

A Malware detector ‘D’ is defined as a function whose
domain and range are the set of executable program ‘P’ and
the set {malicious, bening} [1].In other words malware
detector can be defined as shown below.

D (p) = malicious if p contains malicious code
 benign otherwise.

The detector scans the program ‘p’ ε P to test whether a
program is benign program or malicious program. The goal of
testing is to find out false positive, false negative, hit ratio.
The malware detector detects the malware based on signatures
of malware.The binary pattern of the machine code of a
particular virus is called as signature. Antivirus programs
compare their database of virus signatures with the files on the
hard disk and removable media (including the boot sectors of
the disks) as well as within RAM. The antivirus vendor
updates the signatures frequently and makes them available to
customers via the Web.
a) False positive:

A false positive occurs when a virus scanner erroneously
detects a 'virus' in a non-infected file. False positives result
when the signature used to detect a particular virus is not
unique to the virus - i.e. the same signature appears in
legitimate, non-infected software.
b) False negative:
 A false negative occurs when a virus scanner fails to detect a
virus in an infected file. The antivirus scanner may fail to
detect the virus because the virus is new and no signature is
yet available, or it may fail to detect because of configuration
settings or even faulty signatures.
c) Hit ratio:
A hit ratio occurs when a malware detector detects the
malware.This happen because the signature of malware
matches with the signatures stored in the signature databases.

IV. Malware Detection Techniques

Techniques used for malware detection can be broadly
classified into two categories: anomaly-based detection and
signature-based detection. An anomaly based detection
techniques uses the knowledge of what is considered as
normal to find out what actually is malicious .A special type
of anomaly based detection is specification-based
detection .Specification based detection makes use of certain
rule set of what is considered as normal in order to decide the
maliciousness of the program violating the predefined rule set.
Thus programs violating the rule set are considered as
malicious program. Signature based detection uses the
knowledge of what is considered as malicious to fins out the
maliciousness of the program under inspection.

IV (A) Signature-Based Malware Detection Techniques

Commercial antivirus scanners look for signatures which are
typically a sequence of bytes within the malware code to
declare that the program scanned is malicious in nature.
Basically there are three kinds of malwares: basic,
polymorphic, metamorphic malwares. In basic malware the
program entry point is changed such that the control is
transferred to malicious payload. Detection is relatively if the
signature can be found for the viral code. Figure 1 show basic
malware.

Fig.1 Basic kind of virus

Polymorphic viruses mutates while keeping the original code
intact. A polymorphic malware consists of encrypted
malicious code along with the decryption module. To enable
the polymorphic virus the virus has got polymorphic engine
somewhere in the virus body. The polymorphic engine
generates new mutants each time it is executed. Signature
based detection for such a virus is difficult because each
variant new signature is generated which makes signatures
based detection difficult. Strong static analysis based on API
sequencing is used for polymorphic virus detection [9].Figure
2 shows polymorphic malware’s.

Fig.2 Polymorphic virus

Metamorphic malware can reprogram itself using certain
obfuscation techniques so that the children never look like the
parent [4]. Such malwares evade the detections from the
malware detector since each new variant generated will have
different signature, hence it is impossible to store the
signatures of multiple variants of same malware sample. In
order to thwart detection a metamorphic engine has to be
implemented with some sort of disassembler in order to parse
the input code. After disassembly, the engine will transform
the program code and will produce new code that will retain
its functionality and would still look different from the
original code Figure 3 shows metamorphic malware and
multiple signatures for multiple variants.

ENTRY ORIGINAL CODE MALICIOUS
CODE

ENTRY ORIGINAL
CODE

DECRYPT
CODE

VIRUS
CODE

Fig. 3 Metamorphic malware

Let ‘S’ be the set of malware signatures. For the above figure
- 3, Si Є S are signatures of metamorphic variant belonging to
single metamorphic sample ‘M’.
 The main problems with the signature based
detection method is as follows:

• Signature extraction and distribution is a complex
task.

• The signature generation involves manual
intervention and requires strict code analysis.

• The signatures can be easily bypassed as and when
new signatures are created.

• The size of signature repository keeps on growing at
an alarming rate.

IV (B) Specification-based Detection

Specification-based detection is the derivate of anomaly-

based detection. Instead of approximating the implementation
of a system or application, specification-based detection
approximates the requirements of application or system. In
specification-based system there exists a training phase which
attempts to learn the all valid behaviour of a program or
system which needs to inspected. The main limitation of
specification based system is that it if very difficult to
accurately specify the behaviour the system or program. One
such tool is Panorama which captures the system wide
information flow of the program under inspection over a
system, and checks the behaviour against a valid set of rule to
detect malicious activity [2, 3].

IV (C) Behaviour -based Detection

Behaviour based detection differs from the surface
scanning method in that it identifies the action performed
malware rather than the binary pattern. The programs with
dissimilar syntax’s but having same behaviour are collected,
thus this single behaviour signature can identify various
samples of malware. This types of detection mechanisms
helps in detecting the malwares which keeps on generating
new mutants since they will always use the system resources
and services in the similar manner. The behaviour detector
basically consists of following components which are as
follows:

• Data Collection: This component collects the
dynamic / static information’s are captured.

• Interpretation: This component converts the raw
information collected by data collection module
into intermediate representations.

• Matching Algorithm: It is used to compare the
representation with the behaviour signature.

Fig. 4 Behaviour Detector [14]

V. Obfuscation

Obfuscation is to hide the information such that others
cannot find the true meaning. Software vendors make use of
obfuscation so that the software would be difficult to reverse-
engineer. Malware writers take it as advantage and obfuscate
the malicious program using various obfuscation
transformations so that the Malware is difficult to reverse-
engineer and hence its malicious intent cannot be learned.

V (A) Obfuscation theory

Given a program P and a transformation function T

generates program P’ such that the following properties holds
true:

• P’ is difficult to reverse engineer.
• P’ holds the functionality of P.
• P’ performs comparable to P

Fig. 5. Obfuscation

Many metamorphic and polymorphic make use obfuscation
techniques so that they can defeat the signature based
detection .Obfuscation techniques can easily change the
signatures of Malware. Let us first look at some example of
obfuscation technique modifying the signature of the code
given below.
Original Code
Hex Opcodes Assembly

51 push ecx
50 push eax
5B pop ebx
8D 4B 38 lea ecx,[ebx+38h]
50 push eax
E8 00000000 call 0h
5B pop ebx
83 C3 1C add ebx,1Ch
.
.

P

Obfuscation
Transformation

T (P)
P’

VIRUS
A

FORM
A

FORM
B

FORM
N

S1 S3 S4 S2

Data Collection

Interpretation

Model
Generation Matching

Behaviour Base

Raw
characteristics

Component
Properties Intermediate

Representation

Prediction

.
Signature
5150 5B8D 4B38 50E8 0000 0000 5B83 C31C

Now suppose the original code is obfuscated by inserting a
bunch of junk instruction like nops. Then the obfuscated code
and the new signature is as follows:
Original Code
Hex Opcodes Assembly

51 push ecx
90 nop
50 push eax
5B pop ebx
8D 4B 38 lea ecx,[ebx+38h]
50 push eax
90 nop
E8 00000000 call 0h
5B pop ebx
83 C3 1C add ebx,1Ch
Signature
5190 505B 8D4B 3850 90E8 0000 0000 5B83 C31C
Thus the change in signature is not detected by Malware
scanner and the false negative rate will increase
enormously. Common obfuscation techniques fall into
following main categories:

a) Dead-code-insertion
b) Code transportation
c) Register Renaming
d) Instruction Substitution

V (B) Dead-code-insertion

The example shown above falls into the first category, i.e.
dead-code-insertion. This is can be done by either inserting
bunch of nops (that does not accomplish anything), or
inserting some number of push x followed by pop x, where x
refers to register.

V(C) Code Transportation

Code transportation is done by inserting jump instruction or
unconditional branch instructions so that the original control
flow of the program is maintained. Other techniques such that
swapping instructions which are not interdependent also exist.
 Using the same example in section 4, this technique
would yield a code that would look as follows:

 push ecx
push eax

 jmp A
A: pop ebx

lea ecx,[ebx+38h]
jmp B

 C: pop ebx
 add ebx,1Ch

 B: push eax
call 0h
jmp C
V (D) Register Renaming

This technique replaces the use of a register in an instruction
with another unused instruction. Register replacement requires
that no register dependencies in control flow are affected.
Original Code
Mov eax,32
Mov ecx,1024
Push eax
Sub eax,eax

Push eax
Mov eax,ecx
Add eax,2
Mov [eax+2],ebx
Pop eax
Transformed Code
Mov eax,32
Mov ebx,1024
Push eax
Sub eax,eax
Push eax
Mov eax,ebx
Add eax,2
Mov [eax+2],ebx
Pop eax

V (E) Instruction Substitution

A sequence of instructions is associated to a set of alternative
sequence of instructions which are semantically equivalent to
the original one. Every sequence of original instructions can
be replaced by some arbitrary instructions. For example the
following code is equivalent.
Original Transformed
MOV reg,imm a)MOV reg,Random
 ADD reg,imm-Random
 b)MOV reg,Random
 SUB reg,-(imm-Random)
MOV eax,eax XOR eax,eax

Obfuscated Malware can be detected by collecting multiple
variants of same malware sample and performing similarity
analysis between the variants or generating the normalized
code.

VI. Similarity Analysis

The known sample of malware such as Win32.Evol [4] is
taken and multiple files of the same sample is generated by
obfuscating the known sample. Similarities between the files
are checked to find whether the variant is the child of the
sample under inspection. Similarity analysis using Euclidean
normal form [12] can be used to find the distance between
some vectors x and y as:

 D= √ ∑ (x i – y i) 2
 i=1

A program is represented as some number of functions f, and
each function contains some number of statements which are
termed as vectors x and y. The total number of vectors for the
same program P and for all function f is kept same. Similarity
analysis can be performed by using cosine similarity measure
[6] which is primarily used in text mining. SAVE tool uses the
average of various similarity measures to estimate
maliciousness of the program [7].

n

Fig. 6 Similarity analysis for malware analysis
Following steps are adopted to detect malicious nature of
program.
Step1: Program executable is decompressed (optional) if the
program is compressed.
Step2: Decompressed program is disassembled using the
disassembler like IDA PRO [10] or OllyDbg[11].
Step3: Each disassembled program is represented as a vector
of functions. Each function is represented as array of equal
length.
Step 4: The similarities between the functions of program P’
and P’’ is computed using Euclidean normal form or cosine
similarity measure or Pearson’s similarity measure or Jaccard
similarity measure.
Step 5: The value of the similarity is compared with the
threshold value; if the value is very less than the threshold
value then the program under inspection is benign otherwise
malicious.
Note the choice of similarity is crucial. A high value of
threshold increases the risk of false negative and low value
increases the risk of false positiveness.

VII. Malware Normalization

A Malware normalizer accepts the obfuscated version of
Malware and eliminates the obfuscation carried on the
program and produces the normalized executables .Thus it can
be said that the Malware normalizer increases the detection
rate of the detector. Malware M is taken and passed through
the normalizer. After normalization the signature of this
Malware is extracted and compared with the signatures of
canonical form [8]. Maximum length of matching signature of
canonical form with the Malware is considered and the new
signature of the canonical form is stored in the signature
database for future comparisons. Let us consider a Malware
‘M’ and ci ε C is canonical form of the malware M.

Fig. 7 Comparison of signature of malware ‘M” with the signatures of
canonical forms c i ‘s.

Following are steps involved in malware detection using
malware normalizer:

Step 1: Malware PE binary code is decompressed (optional)
using decompression software.

Step 2: The decompressed code obtained from above step is
disassembled using the standard disassemblers.

Step 3: The disassembled code is then passed through the
normalizer. The normalizer check for obfuscation performed
eliminates obfuscation and produces normalized code.

Step 4: The normalized code is passed to the malware detector
which extracts the signature of the normalized code, compares
it with the signature stored in signature repository.

Step 5: The comparison is based on maximum match of the
signature stored in the repository with the signature
normalized code. For matching any sequence alignment
algorithm can be adopted. Finally the signature of normalized
code is stored in database for future signature comparisons
with other variants.

Fig.8. Malware Normalization and signature comparison [13]

Malware signatures are long and similarity analysis between
signatures of different samples takes more number of
comparisons. Thus there exists need of shorter signatures.
Similarity analysis based on API sequence is used to detect
polymorphic variants [9].The suspicious PE file is optionally

PROGRAM
A

PROGRAM
B

DISASSEMBLER SPLIT
FILE

COMPARISION
ENGINE

REPORT

A1 A2 An BnB2 B1

C1 C2 C3 Cn M

NORMALIZER

S1 S2 S3 Sn S

MATCH

Disassembler

Malware Normalizer

Scanner

Signature

Program PE code

Decompression

decompressed. Then it is passed through the PE parser. The
output of PE binary parser is a sequence of API calls. This
API sequence is 32 bit id. The first 16bit represents a API
module and last 16 bit represents specific API within an API
module. The API sequence call is compared with the sequence
of calls of known malware. Then a similarity between these
API’s sequence is performed, which is compared against
threshold value .If the value is lesser than threshold value then
the sample under inspection is reported as benign otherwise
malicious.

Fig.9 Similarity measure based on API sequence

VIII. Conclusion

In this survey a series of malware detection techniques have
been presented. The problems related to traditional signature
based detection method is also highlighted. Rate of new
malware’s causing destructions to systems world wide is
increasing at alarming rate. Detection of malware’s changing
their signatures frequently has posed many open research
issues. Challenge lies in the development of good
disassembler , similarity analysis algorithm so that the
variants of malware’s can be detected in shorter time there by
reducing the computation overhead.

References

[1] Mihai Christodorescu and Somesh Jha ,” Testing Malware Detectors”,
in Proc. ISSTA’04, July 11 - 14, 2004.pages 33-44, Boston, MA
USA, ACM Press.
[2] Heng Yin ,Dawn Song ,Manuel Egele,Christopher Krugel , and Engin
Kirda , “Panorama: Capturing System – wide Information Flow for
Malware Detection and Analysis”, in Proc CCS’07, October 29 –
November 2, 2007, Alexandria, Virginia, USA,ACM Press.
[3] Andreas Moser , Christopher Krugel , and Engin Kirda, “Exploring
Multiple Execution Paths for Malware Analysis”, Secure
Systems Lab, Technical University Vienna.
[4] Arun Lakhotia , Aditya Kapoor , Eric Uday , “Are Metamorphic
Viruses Really Invincible ? Part 2” , Virus Bulletin ,January 2005.
[5] Abhishek Karnik , Suchandra Goswami and Ratan Guha,” Detecting
Obfuscated Viruses Using Cosine Similarity Analysis”, in The
Proceeding of IEEE Symposium First International Conference on
Modelling & Simulation (ASM ’07)
[6] A.H.Sung, J.Xu, P.Chavez, S.Mukkamala,”Static Analyzer of Vicious
Executables (SAVE)”, Proceeding of the 20th Annual Computer
Security Applications Conference (ACSAC 2004), 2004.

[7] Mihai Christodorescu , Johannes Kinder , Somesh Jha , Stefan
Katzenbeisser , Helmut Veith , “Malware Normalization “, University
of Wisconsin and Madison Technische Universit at M unchen , 2005.
[8] J.Xu, A.H.Sung, P.Chavez, S.Mukkamala,”Polymorphic Malicious
Executable Scanner by API Sequence Analysis”, Proceeding
of 4th IEEE Symposium of International Conference on Hybrid
Intelligent Systems (HIS ’04).
[9] DataRescue, Inc. The ida pro disassembler
www.datarescue.com/idabase,2006
[10] O.Yuschuk. 80x86 32 bit disassembler and
assembler.www.ollydbg.de/srcdescr.htm,2006
[11] Mohamed R.Chouchane and Arun Lakhotia,”Using Engine
Signature to Detect Metamorphic Malware”, In Proc. Worm06
,November3,2006, Alexandria, Virgina, USA, ACM Press.
[12] Mohamed R.Chouchane, Andrew Walenstein and Arun Lakhotia,”
Statistical Signature for Fast Filtering of Instruction-substituting
Metamorphic Malware”, In Proc. Worm07, November 2, 2007”,
Alexandria, Virgina, USA, ACM Press.
[13] Ran Jin,Qiang Wei,Pei Yang and Qingxian Wang ,”Normalization
towards Instruction Substitution Metamorphism Based on Standard
Instruction Set”, In Proc. IEEE symposium on 2007 International Conference
on Computational Intelligence and Security Workshops.
[14] Greoigre Jacob,Herve Debar,Eric Fillol,”Behavioral detection of
malware:from a survey towards an established taxonomy”,Springer-Verlag
France 2008
[15] Gerard Wagener,Radu State,Alexandre Dulaunoy,”Malware Behavior
Analysis”,Springer-Verlag France 2007.

Disassembler

PE Binary Parser

API Sequence

API Look
up table

PE Binary Code

Similarity
Measurement

Signature
DB

Report

